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ABSTRACT 
This paper presents a first attempt at the dynamic identification of a soil-structure interacting 
system. After the description of the structure, a foundation raft on piles, and of the 
experimental equipment used, a modern procedure for the identification of the modal 
parameters is applied. The experimental modal shapes display some asymmetries not 
predictable on the basis of the geometry and mechanical characteristics of the structural 
system. These asymmetries find acceptable physical explanations from the additional 
restraints imposed by local contact with adjacent structures. The construction and updating of 
a numerical model has lead to the reliable evaluation of some, but not all, of the soil-pile 
dynamic stiffnesses. For the remaining ones it is felt that the evaluated real part is sufficiently 
accurate while a considerable uncertainty remains concerning the imaginary part.    
 
 
1. INTRODUCTION 
 
In the evaluation of the response of engineering structures to earthquakes, a significant role is 
often played by soil-structure interaction. In order to account for the dynamic soil-structure 
interaction adequate models are required for the structure, for the foundation and for the soil. 
The situation becomes rather complex for foundations on piles where the interface between a 
foundation and the soil is quite extensive. From the point of view of the structural engineer or 
of the earthquake engineer a proper model of the soil-foundation system is of great 
importance for the prediction of the seismic response of the soil-structure interactive  system. 

Reliable models of the soil-foundation system may be constructed by using boundary 
element method procedures or coupled boundary element-finite element method procedures. 
Simplified models for the dynamic soil-pile system have been presented in the literature 
mainly based on the work by Novak [1, 2]. However the reliability of the numerical and 
simplified models is difficult to ascertain especially because of the great variability of the soil 
properties even within a confined region.    

The main objective of the present work is to provide an experimental evaluation of the 
dynamical characteristics of the foundation-soil system for use in the calibration of numerical 
and simplified models. To this purpose a rectangular foundation raft on piles is considered. 
This particular raft has been subject to static and dynamic load tests. The latter were of an 
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impulsive and of a harmonic type. However in this work only the dynamic harmonic tests will 
be presented, discussed and used.       

A secondary objective of the present work is the calibration of a numerical model that 
reproduces quite closely the observed experimental behaviour and provides good estimates of 
the dynamical characteristics of the soil-foundation systems.  

A fallout of this application will be the evaluation of the mechanical characteristics of a 
simplified soil-pile model. 
 
 
2. THE FOUNDATION SYSTEM 
 
A foundation raft on piles, that was built as part of the supplemental foundation in the seismic 
retrofitting of a reinforced concrete building damaged by a moderate earthquake on December 
13th 1990 in south-east Sicily, has been selected for the experimental tests. 

The raft is built on 18 reinforced concrete piles driven in clayey soil.  The diameter of the 
30 m long piles is 50 cm and the disposition in plan is represented in Fig. 1. The size of the 
reinforced concrete raft is 11.80 m x 3.20 m x 1.00 m.  
 

11.80 m

3.20 m

1.34 m

1.50 m
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

 
Figure 1. Raft geometry and piles layout. 

 
The piles were reinforced with 10 steel bars of 24 mm diameter for the upper 11 metres 

and with 10 steel bars of 18 mm diameter for the remaining 19 metres. There is also a 8 mm 
diameter helical reinforcement with a step of 8 cm for the first 11 metres and 12 cm for 
remaining 19 metres. All piles were subject to cross-hole sonic integrity tests.    
 
 
3. GEOLOGICAL AND GEOTECHNICAL CONDITIONS  
 
A brief summary of the geological and geotechnical conditions at the site is reported in 
reference [3]. Here it suffices to know that the piles are driven into soft soil of variable 
characteristics up to a depth of 15 metres after which the characteristics become roughly 
constant. The longitudinal and shear wave velocities evaluated up to a depth of 80 metres, 
show a roughly parabolic increase from the surface down to 15 metres and then remain 
constant (Vl=1800 m/s, Vs=600 m/s). Apart from the initial 15 metres the foundation soil is a 
thick layer of  grey-blue infra-pleistocene clay which may reach depths of the order of 300-
500 metres. Because of the strong variability of the soil properties for more than half of the 
pile length it has been considered appropriate to use a simplified model for the soil-pile 
system. 
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4. EXPERIMENTAL EQUIPMENT  
 
The excitation has been provided by a harmonic actuator in the frequency range 5-15 Hz. The 
applied harmonic load has been measured by means of specifically designed load cells and 
acquired by a suitable dynamic data acquisition system. Therefore all the characteristics of the 
applied load have been clearly evaluated. The amplitude of the applied load varied from a 
minimum of 6 kN at 5 Hz to a maximum of 50 kN at 15 Hz.  
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Figure 2. Experimental set-up. 
 

The response of the structural system has been measured by means of 14 piezoelectric 
acceleration transducers with the following characteristics: resolution 10-6 g, amplitude range 
± 0.5 g, sensitivity 10 V/g. The accelerometers were disposed, as shown in Fig. 2, in a three-
axial configuration at each of the four corners on the roof of the raft and the remaining two in 
a mono-axial configuration along one of the axes of symmetry of the raft. These two 
accelerometers were oriented along the direction where the test was performed, that is in a 
longitudinal or transverse direction according to the case. 
 
4.1. Data acquisition 
The response was acquired by means of a suitable dynamic data acquisition system. The 
frequency response functions (FRF) were evaluated at all the measurement points for each of 
the measured acceleration components. The frequency step used in the experimental test and 
in the construction of the FRF  was equal to 0.1 Hz. At each step the response was recorded 
for 90 seconds after the transient phase had expired. The sampling frequency was set at 100 
Hz and considered sufficiently high in view of the frequency range of interest. Obviously the 
same procedure was used for the acquisition of the exciting force. The analogue signals 
produced by the accelerometers and the load cells are properly conditioned before being fed 
into the analogue-to-digital converter and then recorded and stored in ASCII format. 
 
 
5. IDENTIFICATION OF MODAL PARAMETERS 
 
The frequency response functions (inertances) were constructed from the recorded signals for 
each recorded acceleration signal. Therefore, for each testing direction, 14 FRF were 
constructed. Four FRF are shown in Fig. 3a for the test in the transverse direction, and in Fig. 
3b for the test in the longitudinal direction. The representation is given both in terms of 
amplitude and phase  and in terms of real and imaginary parts.  

The acceleration signals considered refer both to the direction of testing and to the 
measurement points at the four corners of the raft. 
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Figure 3. a) FRF for the test in the transverse direction;  
b) FRF for the test in the longitudinal direction. 

 
5.1. Identification of the modal parameters 
The FRF generated have been used to estimate poles and residues from which frequencies, 
damping ratios and modal shapes may be derived. The IDRC algorithm [4] has been used to 
estimate poles and residues while the IDRM algorithm [4, 5] has been used for consistency 
checks on these results and to derive frequencies, damping ratios and modal shapes. In the 
investigated frequency range three modes have been identified. The poles, frequencies and 
damping ratios identified are shown in Table 1, while the corresponding modal shapes are 
represented in Fig. 4.  Each modal shape is shown in plan and in a three-dimensional view. 

 
Table 1 Identified modal parameters: pole λ, natural frequency ω, damped frequency ωD, damping ratio ξ. 

Mode 
λ ω ωD ξ 

[Hz] [Hz] [Hz] [%] 

1 −1.5425 − i 10.106 10.2230 10.1060 15.088 
−1.5425 + i 10.106 

2 −1.3027 − i 11.734 11.8060 11.7340 11.034 
−1.3027 + i 11.734 

3 −3.3455 − i 12.669 13.1032 12.6690 25.532 
−3.3455 + i 12.669 
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Figure 4. Identified modal shape: a) three dimensional view, b) plan view.  

 
From the observation of the modal shapes it is possible to conclude that the first mode, 

corresponding to a natural frequency of 10.22 Hz, is translatory  in the longitudinal direction. 
The second mode, corresponding to a natural frequency of 11.81 Hz, appears to be a coupled 
translatory and rotational motion. The translation occurs in the transversal direction while the 
rotation occur in the horizontal plane. 

The third mode, corresponding to a natural frequency of 13.10 Hz, is also a coupled 
translatory and rotational mode. This time the coupling is weaker and the rotation occurs in 
the vertical plane. 

Given the geometrical and mechanical symmetry of the structure with respect to the 
transverse axis, one would have expected a symmetric translatory mode in the transverse 

a) b) 
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direction and a pure torsional  mode. Some weak coupling could have been also expected, but 
the predominance of the translatory motion, in one case, and of the rotational motion, in the 
other case, should have been evident. 

The third mode seems, in fact, to fall in this class. However the strong coupling present in 
the second mode points to the existence of some sort of asymmetry in the system. The 
presence of this asymmetry renders the present problem more rewarding and the calibration of 
numerical models more challenging.  
 
 
6. NUMERICAL MODEL UPDATING 
 
A numerical model of the raft-soil-piles system has been formulated by using solid finite 
elements for the raft and linear spring elements for the soil-pile system. Each soil-pile system 
has been idealised by three independent linear springs along three perpendicular axes one of 
which being coincident with the pile axis and the other two being parallel to the axes of the 
raft. The mass density and the mechanical  properties of the raft have been considered to be 
known. Therefore the main object of the numerical model updating has been a reliable 
estimate of the stiffness of the linear springs. Overall a total of 54 stiffnesses (3 
stiffnesses/pile x 18 piles = 54 stiffnesses) need to be estimated. 

 
6.1. Updating procedure 
The updating procedure of the numerical model is based on the constrained least squares 
minimisation of the relative error between the numerical and experimental values of the first 
three frequencies. As in any numerical optimisation procedure a starting point is needed. In 
this case the initial spring stiffnesses were evaluated on the bases of the simplified model by 
Novak [1]. Due to the variability of the soil properties with depth, average values were used. 
In particular the following values were used for the longitudinal, transverse and vertical 
stiffnesses: Kl = 25881 kNm-1, Kt = 34508 kNm-1, Kv = 447036 kNm-1.  

The constraints are applied by setting lower and upper bounds for each spring stiffness on 
the basis of physical expectation. The lower bound for each type of spring stiffness was set 
equal to 24000 kNm-1 while the upper bound was set equal to 480000 kNm-1.  

From the starting point the least squares optimisation procedure is applied to reach a new 
state or point. The procedure is iterated until the final state differs from the previous one by 
less than a prescribed tolerance. The control parameter for the tolerance is the mean-square 
error calculated from the three considered frequencies. 
 
6.2. Optimal model reliability  
The optimal model obtained for a prescribed tolerance ε = 0.001 after 7 iterations has been 
subjected to assurance tests in order to ascertain the degree of correlation with the actual 
structure as described by the experimental data.   

A comparison of the experimental and numerical frequencies is given in Table 2 for the 
start-up model and for the optimal one. As may be seen from the table, the error in the 
individual frequencies is less than 1%, actually only one or two units in a thousand. The same 
error for the start-up model is considerably higher. 

The modal assurance coefficients (MAC), that provide the degree of correlation between 
the experimental and numerical modal shapes, are also given in Table 2 for the start-up and 
for the optimal model. It may be of interest to notice that the MAC coefficients for the first 
two modal shapes are quite close to one already for the start-up model, indicating a good 
correlation with the experimental modal shapes. However the MAC coefficient for the third 
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mode is nearly zero, indicating lack of correlation between the experimental and numerical 
modal shapes. The cross correlation coefficients, that should be zero for a good correlation 
between experimental and numerical modal shapes, are not given in the table but are quite 
large with reference to the third mode, as may be inferred  from the histogram of Fig. 5. 
 
Table 2. Experimental and numerical frequencies, relative error and MAC coefficients. 

Mode 
Experimental 

frequency 
Start-up model Optimal model 

[Hz] [Hz] Error [%] MAC [Hz] Error [%] MAC 

1 10.2232 10.2618 0.40 0.92 10.2252 0.02 0.95 
2 11.6147 11.6392 0.20 0.79 11.6321 0.15 0.97 
3 13.3190 11.8374 −11.10 0.02 13.3210 0.01 0.36 

 Root mean square error : 11.95 % Root mean square error : 0.09 % 
 

a) b)
 

Figure 5. a) MAC coefficient between start-up model and experimental model: b) MAC 
coefficient between optimal model and experimental model. 

 
The direct MAC coefficients for the optimal solution are improved considerably with the 

respect to those for the start-up model. However the MAC coefficient for the third mode is 
still relatively low and much  smaller than one of the cross coefficients, as may be gathered 
from the histogram of Fig. 5b. 

This analysis shows that the final updated model describes quite well the frequency 
characteristics of the real system and sufficiently well the first two modal shapes, while the 
third one appears to be still a poor approximation. The reason for this behaviour may come 
from the fact that the actual modal shapes may be complex, rather than real, and the model 
adopted here might not be suitable for the description of the real structure. 

A further check on the reliability of the updated model can be done on the FRF. The check 
is known by the acronym of FRAC (Frequency Response Assurance Criterion) [6] and 
provides a measure of the distance between the experimental and numerical FRF. A FRAC 
coefficient of one indicates perfect correlation between numerical and experimental FRF 
while a zero value indicates independent FRF.  In the present work the FRAC coefficients 
have been evaluated for all the available experimental FRF and corresponding numerical 
ones. The results are shown in Fig. 6a for the test in the longitudinal direction and in Fig. 6b 
for the test in the transverse direction. In the same figure are shown also the corresponding 
FRAC coefficients for the start-up model. It may be worth noticing that the FRAC 
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coefficients for the relevant degrees of freedom (response parameter in the same directions as 
the excitation) are all very close to one, indicating a good correlation between the 
experimental and numerical FRF. However the FRAC coefficients for the non-relevant 
degrees of freedom may be in some cases rather low indicating a poor correlation for the 
considered FRF. 
 

Transverse direction 

a)

Longitudinal direction 

b)
 

Figure 6. FRAC coefficient: a) test in transverse direction, b) test in the longitudinal direction. 
 
6.3. Soil-pile stiffnesses 
The asymmetry displayed by the experimental model and by the optimal numerical model 
derives from the distribution of the stiffnesses of the soil-pile systems. The optimal model 
provided the following values for the stiffnesses of the soil-pile systems: Kl=25496 kNm-1, 
Kt=34123 kNm-1 and Kv=446651 kNm-1 for all piles apart from pile 10, Fig.1, which exhibits 
a considerably larger transversal stiffness, Kt=92483 kNm-1. This values is nearly four times 
larger than the corresponding value for the other piles. A physical explanation of this 
behaviour may not be found in differences in the soil or in the pile but rather in some 
additional restraint on the transverse motion provided by a possible local contact between the 
pile considered and a pile of the existing foundation due to imperfect construction. This could 
explain the additional stiffness that would be provided by the existing foundation.   
 
 
7. DIRECT MODAL DAMPING IDENTIFICATION 
 
The observation of the modal shapes shows that the contribution of the second and third mode 
to the FRF to longitudinal degrees of freedom is negligible. By neglecting also the 
contribution of higher modes, the first mode dynamical characteristics may be identified 
directly from the FRF corresponding to the longitudinal degrees of freedom.     

The first mode equation of motion may be written as follows (Equation 1): 
 
 [ ] ( ) ( )ω=ωω+ω− fu  Ci M K 111

2
1  (1) 

 
where M1, C1 and K1 are respectively the modal mass, the modal damping coefficient and the 
modal stiffness, while ( )ωf  is the amplitude of the harmonic excitation. The complex 
dynamic stiffness function may be derived directly from Equation 1: 
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The first mode displacement ( )ω1u  may be assimilated into any one of the longitudinal 
degrees of freedom. There are 6 experimental longitudinal degrees of freedom and each one 
of them gives rise to an experimental dynamic stiffness function. A curve fitting procedure 
provides the  first mode characteristics given in Table 3.   
 
Table 3. First mode characteristics.  

FRF Modal mass 
M1 [Ns2m-1] 

Modal stiffness
K1

 [Nm-1] 
ω1 

[Hz] 
Modal damping 

C1
 [Nsm-1] 

ξ1 

A05 110113.35 502537051.63 10.752 3196519.39 0.215 
A06 101430.30 482162427.53 10.973 3337758.28 0.239 
A00 102074.63 488487694.11 11.010 3389808.66 0.240 
A07 102646.20 457235860.70 10.622 3320616.07 0.242 
A08 99118.75 473115232.04 10.996 3289397.13 0.240 
A13 108564.01 493942040.05 10.735 3354681.65 0.229 

m 103991.21 482913384.34 10.848 3314796.86 0.234 
σm 3961.745 14683865.516 0.151 61119.232 0.010 

c.o.v. [%] 3.810 3.041 1.391 1.844 4.113 
 
The curve fitting procedure is displayed in Fig. 7 with reference to the A05 dynamic stiffness 
function. It should be noticed that while the fitting is rather good for the real part of the 
dynamic stiffness function, it is only an average approximation for the imaginary part that 
provides damping. This might explain the difference in the predicted damping ratio (23.4%) 
with respect to the value obtained  by the experimental identification (15.1%). 
 

 
 

Figure 7. Dynamic stiffness function: a) real part, b) imaginary part. 
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Furthermore, from Fig. 7b, it appears that the modal damping coefficient cannot be 
considered frequency independent. 

By considering that stiffness and damping are provided predominantly by the soil-pile 
systems and mass is provided predominantly by the raft, the following expressions Table 4 
may be provided for the dynamic stiffness of the longitudinal soil-pile systems. 
 
Table 4. Longitudinal dynamic stiffness of a soil-pile system. 

 Model updating FRF curve fitting 
Kl + i ω Cl   [kNm-1] 25496 + i ω 120 26829 + i ω 184 

 
The differences are due to the different degrees of approximation of the experimental data by 
the two identification procedures that have been used. The difference in the real parts is of the 
order of 5% and therefore well within engineering tolerances. The difference in the damping 
coefficient is more pronounced but may be attributed to the poor fitting in the second method.  
 
 
8. CONCLUSION 
 
Some procedures for the dynamic identification of a foundation raft on piles have been 
presented. The dynamic stiffness for the soil-pile system has been evaluated at least in the 
longitudinal direction. In the transverse and vertical directions the real parts can be considered 
as sufficiently accurate while the imaginary part, related to damping, is of a more problematic 
evaluation. The classical modal synthesis leads to not sufficiently accurate results because the 
actual modes are complex rather than real. Therefore this contribution must be viewed only as 
a first step towards the identification of soil-structure interacting systems. Further studies 
considering complex modal shapes and frequency dependent dynamic stiffnesses could lead 
to more reliable results.      
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